
 

 

  
Abstract— 2-D problem of monochromatic electromagnetic 

waves diffraction by a perfectly conducting closed cylindrical surface 
(the case of H-polarization) has been considered. The mathematical 
model of the diffraction problem above has been built. A new 
approach of the transition to discrete mathematical model has been 
considered. The discrete mathematical model is based on the method 
of the discrete singularities. The numerical experiment has been 
made. 
 

Keywords — vector and scalar potentials, integral equation, 
logarithmic kernel.  

I. INTRODUCTION 
HE purpose of the work is to construct the discrete 

mathematical model of the diffraction problem H-
polarization electromagnetic waves by a perfectly conducting 
closed cylindrical surface. Vector and scalar potentials have 
been used for constructing the mathematical model of this 
problem [1]. The method of discrete singularities has been 
applied for constructing the discrete mathematical model of 
this problem. The numerical method has been made in some 
cases where directivity patterns modulus of the complex 
amplitude of the scattering field has been built. 

II. VECTOR AND SCALAR POTENTIALS 
We introduce the Cartesian coordinate system (x1, x2, x3). 

Let us consider a perfectly conducting cylinder which is 
infinite along axis x3.  The intersection has been made by plane 
parallel to the plane X1OX2. To denote L, the simple smooth 
contour, is the directrix of a cylindrical surface. 

Vectors of the electromagnetic field have been represented 
as [2] :  

( ) ( ) tiexEtxE ω⋅=,  ,       (1) 

( ) ( ) tiexHtxH ω⋅=, ,       (2) 
where  

 ( ) ( )( ) ( ),,,0,0
33

xuHxHxH xx ==    (3) 

( ) ( ),0,,
21 xx EExE =       
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There is exterior boundary value problem.  u(x) is unknown 
function and all components of the electromagnetic fields are 
expressed by this function.  

We have considered the Maxwell equations in the 
differential form: 

B
t

Erot
∂
∂

−= ,         (5) 

D
t

Hrot
∂
∂

−= ,         (6) 

ED ε= ,           (7) 
HB µ= ,          (8) 

where ε  is the dielectric permittivity of the medium, µ  is the 
permeability of the medium. 
 Since  

0=Bdiv ,            

then, as known, vector B  is represented as 
HrotB = ,          (9) 

then from (8): 
 ArotH

µ
1

= .         (10) 

Taking into account the equality (10), substituting (8) to (5), 
we obtain: 

HiErot ωµ−= ,        (11) 
ArotiErot ω−= ,       (12) 

( ) 0=+ AiErot ω .       (13) 
As known,  

( ) 0=ψgradrot ,        (14) 
so from (13), taking into account (14), we obtain: 

AiEgrad ωψ +=− ,      (15) 
AigradE ωψ −−= .      (16) 

So vector A and electrodynamics scalar potential ψ are 
related with E  and H relations (10), (16). 
 As known, 

{ } { } AAdivgradArotrot 2∇−= .    (17) 
Substitute (10) and (16) to (6) 

{ }AigradiArotrot ωψωε
µ

−−=






 1 ,   (18) 
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Taking into account (17), we obtain: 
{ } { }AigradiAAdivgrad ωψωεµ −−=∇− 2 . (19) 

We finally have: 
{ } εµωωεµψ =+=+∇ kAdivigradAkA ,22 . (20) 

 As A uniquely defined, so the condition is imposed: 
 0=+ Adiviωεµψ ,        (21) 

Then we obtain equation: 
022 =+∇ AkA .        (22) 

The solution of Gelmgolt`s equation is vector potential [3]: 
 ( ) ( ) { }

M
MN

MN

S
ds

L
ikL

MjNA
−

= ∫
exp

4π
µ ,  (23) 

where  MNL  is the distance from the integration point M to 
the observation point N. 
 Now to imagine scalar potential in the form of an integral 
over the surface S. the density of the current )(Mj  is defined 
by points, that belong to the surface. Substitute (23) to (21), 
also assuming, that observation point N does not belong to the 
surface S, than have divergence operator under the integral 
sign. Taking into account: 

 { } adivgradaadiv ⋅+⋅=⋅ ϕϕϕ ,     (24) 
we obtained the scalar potential: 

( ) ( ) { }
M

MN

MN

S
ds

L
ikL

gradMjiN






 −

⋅
−

= ∫
exp

4πωε
ψ . (25) 

III. OUTPUT THE BOUNDARY INTEGRAL EQUATION 
The tangential component of the intensity vector of the total 

electric field by the surface becomes equally 0. This is 
boundary condition: 

[ ] [ ]000 ,, nEnE −= ,       (26) 

[ ] [ ] [ ]{ } SMNAniNgradnnE
MN

∈+−=
→

,)(,)(,lim, 0000 ωψ  

                       (27) 
We introduced curvilinear coordinate system zq ,,τ for 

convenience, so that surface S coincides with the part of the 
coordinate surface constqq == 0 . Point M has 

coordinates ζηξ === 321 ,, xxx . 
As the directrix of the cylindrical surface in this case is 

ellipse, then parametric surface has the form: 

[ ) ( )
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Let 0t  is the basis vector of the variable τ in the point M, 
flux density is present in the form of 

( ) ( ) ( ) ( ) 00 ,,, ztjttjtjMj z ⋅+⋅== ζζζ τ ,   (29) 
where  ( ) ( )ζζτ ,,, tjtj z  are respectively transverse and 
longitudinal components of the vector on the point M. 
 As we have seen H-polarized field, then the surface currents 
are only transverse 

 ( ) ( ) 0ttjMj ⋅= τ .        (29.1) 

In this case the boundary condition has the form: 

( ) [ )πω
τ
ψ

ττ
τ

2,0,,1
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Considered the scalar potential (25). As  
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then we obtained finally   

( ) ( ) ( ) ( )∫ ∂
∂−

=
π

τωε
ψ
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Then considered the vector potential and found ( )NAτ . As 

( ) ( )( )NANA ,0ττ = ,       (37) 
We obtained 

( ) ( ) ( ) ( ) ( ) ( )∫=
π

ττ τ
τ
µ 2

0

2
0,

4
dttjLkHts
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 In (30) the point N can be omitted on the contour L, if we 
understand the integral in the principal value sense. In order to 
obtain an integro-differential equation, we must substitute the 
representation for the scalar potential (36) and the τ –
component of the vector potential at the boundary condition. 
 Thus we have the boundary integral equation: 
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( ) ( ) ( )

( ) ( ) ( ) ( ) ( )∫
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(41) 
 ( ) ( )( ) ( ) ( )( )2

22
2

110 ττ xtxxtxL −+−= ,    (42) 

( ) ( ) ( )( ) ( ) ( )( )2
202

2
101 ,,,,,, τττ qxtqxqxtqxtqL −+−= ,

 (43) 
εµω=k ,        (44) 

where (x1(q0,t) and x2(q0,t)) are coordinate points, which 
belong to the contour,  (x1(q, τ) and x2(q,, τ)) are coordinate 
points, which belong to the contour of the normal to the 
surface. Under the limit q → q0, we understand that research 
point is raised above the contour and then that point falls along 
the normal to the contour. 
 After we have allocated hypersingular and logarithmic 
features, finally we have obtained the integral equation: 
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( ) ( ) 04 τεωττ Elf = .        (47) 

IV. THE DISCRETE MATHEMATICAL MODEL OF THE PROBLEM 
For the construction of the discrete model we have 

formulated the problem for the approximate solution in the 
form of the interpolating polynomials. We have replaced all 
smooth function in (47) by corresponding trigonometric 
interpolation polynomials [4]: 
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n
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j
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0
,2 =

+
+

== πϕϕ .  (51) 

We have used interpolation quadrature formula with special 
set of points as nod. We have obtained the system of linear 
algebraic equations where unknown vectors are current density 
values ( ( )tjτ ) in special set of points: 
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V. THE DIRECTIVITY PATTERN OF SCATTERED FIELD 
Consider the case, when the directrix of the cylinder is 

ellipse, whose center is at the origin. Then the parametric 
representation of the contour directrix can be written as 
follows: 

[ )



∈⋅=
⋅=

.2,0,sin
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πttbx

tax      (53) 

And let 
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As Ω∈Cy , we have assumed, that Rr >> . 
Asymptotic behavior of the Hankel functions at infinity [5] is 

( ) ( ) +∞→≈
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ππν

ν π
.   (55) 

The directivity pattern of scattered field is determined by the 
formula [6] 
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(57) 
Thus, finding limit (56), we have got directivity diagram of the 
complex amplitude of the scattered field: 
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To denote 
( ) ( ) ( )( ) ( ) ( )( )0201 sincos

02020 sincos, ttxttxikettxttxttg +⋅′+′−=
(59) 

Replacing ( )0, ttg  and ( )tjτ   the corresponding interpolation 
functions by trigonometric polynomials, using appropriate 
quadrature formula, we have finally obtained 
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=

⋅
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n
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12
2 ϕϕϕπ
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VI. CONCLUSION 
Thus, mathematical and discrete mathematical models 

of the diffraction problem H-polarization electromagnetic 
waves by the perfectly conducting closed cylindrical surface 
had been built. The numerical experiment had been made. The 
directivity pattern of the scattered field module complex 
amplitude had been built. The method of discrete singularities 
is based on the special quadrature formulas of interpolation 
that guarantees high accuracy and high rate convergence of the 
algorithm. 
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Fig.1. The directivity diagram of the complex amplitude of the scattered field, 

directrix is circle, R=1,  
2
πα = . 

 

 
Fig.2. The directivity diagram of the complex amplitude of the scattered field, 

directrix is ellipse,  1,
9

10 2 −== aba ,  
2
πα = . 

 

 
 
Fig.3. The directivity diagram of the complex amplitude of the scattered field, 

directrix is ellipse,  1,
9

15 2 −== aba ,  
2
πα = . 
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